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Reflection Coefficient Transformations
for Phase-Shift Circuits

‘HARRY A. ATWATER, SENIOR MEMBER, IEEE

Abstract—1It is shown how switchable one-port circuits having two
impedance states may be transformed so as to exhibit reflection
coefficients which have a prescribed phase angle difference and equal
magnitude in the two states. In reflection-type phase shifters, arbitrary
phase shift may be obtained without change of signal amplitude. The
reflection properties are achieved by the use of an impedance-transforming
two-port network. Design equations and an example are given.

I. INTRODUCTION

N THE DESIGN of phase-shift circuits for applica-
I tions in phased array steering and phase modulators,
switching circuits based on solid-state components have
advantages of compact size and high switching speed.
Semiconductor-based phase shifters also have the poten-

Manuscript received August 24, 1979; revised December 7, 1979. This
work was supported by the U.S. Department of the Navy.
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Technology, Lexington, MA 02173.

tial for integration on a single chip with their associated
circuits. In digitally controlled phase shifters, phase-shift
elements are required which ideally change the phase of
the transmitted signal by a specified amount without
altering its amplitude. In the usual formulation of these
circuits, two-port elements in cascade introduce a discrete
step or bit in phase of the transmitted signal. Circuit
forms which have been employed are: path-switching
circuits, loaded-line phase shifters, and reflection-type
phase shifters used in conjunction with a hybrid coupler.
Phase-shift circuit technology has been extensively re-
viewed [1]-[4].

II. REFLECTION-TYPE PHASE SHIFTERS

The reflection-type circuit has been employed in several
recent phase shifter designs [5]-[7]. The basic reflection-
type phase shifter consists typically of switchable imped-

0018-9480/80,/0600-0563$00.75 ©1980 IEEE
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Fig. 1. (a) Terminated hybrid coupler for reflection phase shifter. (b)

Coupler with transformed terminating impedances.

ance elements Z, and Z, terminating two ports of a 3-dB
hybrid tee, with the output of the tee being taken from the
normally decoupled port (Fig. 1(a)). The output signal
from the hybrid is

Vomig [T(Z)+T4(2)]

where V; is the ingoing wave, and I' ,(Z,) and I'y(Z,) are
the reflection coefficients of terminations Z, and Z,. If Z,
and Z, are equal, the reflected wave at the input is zero. It
will be assumed in the following that Z,=Z,=Z. It is
assumed that impedances Z contain a semiconductor ele-
ment which may be biased to its “off” or “on” state,
producing input impedances Z, and Z,, respectively. The
output of the phase shifter will have the desired character-
istic of constant signal amplitude with phase angle change
¢ if

r(z)= ej¢F2(Z2). 1)
The condition of (1) will not normally be true for
terminating impedances consisting of a p-i-n diode or
similar semiconductor element. In principle, 180° phase
shift with unit reflection amplitude is achieved by switch-
ing between an ideal short circuit and an ideal open
circuit. However, for a termination consisting of p-i-n
diode having a forward resistance of 3 @ and a capaci-
tance of 0.05 pF under reverse bias, a phase shift of only
about 160° is possible in the reflected wave at 10 GHz. A
section of short-circuited transmission line may be con-
nected in shunt with the diode in order to increase the
amount of phase shift available, or other tuning elements
and circuit modifications may be introduced in order to
adjust the amount of phase shift or improve the uniform-
ity of the reflected signal in amplitude. These modifica-
tions may be arrived at empirically or by trial and error
methods [8),[9]. It is shown in the following sections,
however, how an impedance-transforming network may
be designed for a given two-state termination or one-port
element which yields a prescribed change in the phase

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 6, JUNE 1980

TABLE I

angle of the reflection coefficient I upon switching, while
maintaining constancy of the magnitude of T.

III. DERIVATION OF TRANSFORMATION EQUATIONS
The impedance transformation by a two-port is
, AZ,+B
4=¢z,%D @)

where n= 1,2, correspond to impedance states before and
after switching respectively, and 4, B, C, D are the
elements of the matrix (M) of general circuit parameters.
The reflection coefficients of the transformed impedance
states are

’ "N Zn,_ ZO _
I‘"(Z")_Z,:TZO’ n-—1,2 (3)
and (1) assumes the form
TU(Z)=e"Ty(Z)). 4

Equations (2) and (3) have the form of bilinear transfor-
mations, or fractional linear transformations [10]. The
successive application of two bilinear transformations is a
bilinear transformation. The symbol £,.Z; will be used
here to represent the application of the bilinear transfor-
mation of (3) to Z,. Similarly, using ,@MZ,, to represent the
right side of (2), (4) may be expressed in the form

.ér :éuzl = e‘j¢1ér ,éMzz' )

A simple product of two factors may be represented by a
bilinear transformation. Multiplication of function f by
the factor ¢/* may be represented by the transformation

5 /%40
RPpryE (6)
+e Jo/
Equation (5) then becomes
:ér :éle = :é.;uér :éMzz- ™

There is a group correspondence between the applica-
tion of bilinear transformations and the multiplication of
2X2 matrices (10),(11). Matrices corresponding to the
transformations which have thus far been introduced are
given in Table I.

The inverse bilinear transformation, corresponding to
the removal of a specific transformation, has as its matrix
counterpart the inverse of the transformation matrix. Rep-
resentmg the inverse of transformation ,B by the symbol
,Bx , operatmg on (7) from the left with the transforma-
tion B,; '8! yields the following result:

Z,= BA; .Br— .3¢,3r ﬁuzzsﬁszz- (8



ATWATER: REFLECTION COEFFICIENT TRANSFORMATIONS

f—— 90° —+
Tt 3
|4 A

b

20

@
f—— O ——
z, Zom
zm
®)
‘ 90° —i 45°~‘

©)

Fig. 2. Two-port impedance transformers. (a) Double-stub transformer
with quarter-wavelength spacing. (b) Line segment of characteristic
impedance Z;,, and electrical length 4,,. (c) Line segment of electrical
length 90° and characteristic impedance Zg, in tandem with 45°
segment of characteristic impedance Z,,.

The combined transformation J, represents a mapping
which maps the final-state impedance Z, onto its initial
state Z,. This overall transformation is represented by the
matrix product

B, B,\ ([ D -B 172 1/2
(le Bzz)_(‘c A)(_Yo/2 Yo/2)

PAZEI 1 —-Z,\(A B
(&7 en)l 2NE 5) @

where Y,=1/Z,,.
Using the combined matrix B; defined by (9), equation
(8) is equivalent to

By Z\Z,+ BpZ,— B\,Z,— B|,=0. (10)

Equation (10) represents the basis for the design of the
required impedance transforming network. In general,
each factor B; depends on all four elements 4, B, C, D of
the two-port impedance transforming network. When the
real and imaginary parts of (10) are separated, the result-
ing two equations are not sufficient to determine the four
unknowns A4, B, C, D. Therefore, it becomes necessary to
define the coupling network in terms of two parameters. A
variety of available matching circuits may be specified in
terms of two parameters. These include the double stub
impedance transformer with quarter-wavelength spacing,
the two stub lengths 8, and 8, being the free variables; a
line segment of characteristic impedance Z;,, and length
6,; or also a pair of line segments of fixed length in
tandem, with their characteristic impedances Z,,, and Z,,
being the free parameters (Fig. 2). Using any of these
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impedance transforming networks, (10) may be solved for
the design values of the parameters in terms of the known
terminating-impedance values Z,; and Z,.

A more general method of description of a two-port
matching network is available however in terms of its
“matching impedance” Z,, which is defined as that im-
pedance which would be transformed to the input line
characteristic impedance Z, by the network. This is
summarized by the requirement

_AZ,+B _,

Zy= Tz +D =By Z, 1y

Since the virtual impedance Z,, is matched to Z, by the
matching network, its reflection coefficient vanishes. The
bilinear operator expression for its condition is

BrBuZ,,=0 (12)
By use of (12) in (5), it is possible to determine R, and
X,,, the real and imaginary parts of Z,, in terms of the
known values Z, and Z, of the two-state impedance being
transformed and the angle ¢ of phase shift. Details of this
calculation and the resulting expressions for R,, and X,
are given in the Appendix.

The introduction of bilinear notation is not essential to
the determination of the reflection coefficient transform-
ing network. Equation (4) may of course be solved by
conventional algebraic means. The use of the bilinear
forms serves to display the structure of the problem and
to organize its solution. The design of reflection
coefficient transforming networks has previously been dis-
cussed by Navarro [12] and Steinbrecher [13]
Steinbrecher presented design equations which are in
agreement with those obtained analytically here, but ob-
tained his results by means of a construction based on the
hyperbolic geometry of the Smith chart.

IV.

When the impedance Z, required for a given phase
shift is known, conventional procedures may be employed
to design a matching network to match this virtual imped-
ance to the line characteristic impedance Z,. Smith chart
techniques are frequently used to obtain circuit parame-
ters for the matching circuits shown in Fig. 2. With the
availability of electronic computing facilities, the analytic
expressions for the circuit parameters are convenient and
yield more precise results than the graphical methods.
Expressions for two-parameter matching networks are
given below.

IMPEDANCE MATCHING NETWORKS

A. Quarter-Wavelength Double-Stub Transformer (Fig.
2(a))

The impedance Z,, to be matched may be expressed in
terms of its normalized admittance y,, = g,, +/jb,,:
(13)

. Z,
g, +ib,= -z
m

The electrical lengths of the two stubs are
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1—
0,=Ftan™' Em (14)
8,=tan~"[ -5, %Vg,(1-8,) | (15)

where 8, is the length of the stub nearer the termination.

B. Transmission Line Transformer (Fig. 2(b))
Characteristic impedance

(RmZO— er - X:ﬁ)
(ZO_ Rm)

Zom="\/Zo (16)

Electrical length

om=tan—'\/(—2;f;’§ﬁ(&nzo—a,z—x;). ()

C. Tandem 3/8-Wavelength Network (14) (Fig. 2(c))

The final (45°) section of this network has a characteris-
tic impedance equal to the magnitude of the terminating

impedance
Zm=\/R,ﬁ+X,f, . (18)

The initial (90°) section has the characteristic impedance

Z = ZORmZm
o V(Z,-X,)

V. TRANSFORMATION NETWORK DESIGN EXAMPLE

(19)

The reflection-coefficient transformation method was
demonstrated in a microstrip network at 1.1 GHz, using a
glass-encapsulated p-i-n diode as the semiconductor ele-
ment. The diode was mounted in series connection span-
ning a 2.54-mm gap in terminated 50-Q microstrip line on
a 10.16-cm X 20.32-cm substrate 3.18 mm thick having a
relative dielectric constant of 2.32. The diode was reverse
biased with 5.0 V, and forward-biased with a current of
2.0 mA, in its “off” and “on” states, respectively. Imped-
ances Z, and Z, were the impedances measured at the
coaxial connector of a coaxial-to-microstrip transition to
the substrate containing the diode. The observed imped-
ances at the input to this two-state circuit at 1.1 GHz were

Z,=2.1+4;939
Z,=333-,183Q"

Diode OFF:
Diode oN:

These impedances correspond to reflection coefficient
magnitudes of 0.92 and 0.29, and reflection angles of 159°
and —120°, respectively. In the transformation method,
these impedances are transformed to new values which
produce equal reflection amplitude and have a prescribed
phase angle difference. Using the formulas given in the
Appendix and specifying phase shifts of 90° and 180°, the
matching-impedance parameters of the required networks
are found to be

¢=90°:
¢=180°:

Z,=99+;16.4
Z,=10.7+;1.7.
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Each calculation for Z, yields a pair of solutions.
Solutions containing a negative real part R,, do not repre-
sent useful matching circuit parameters. The sign of R, is
changed by interchanging Z; and Z, (equivalent to chang-
ing the sign of ¢). Impedance transforming network forms
for the diode impedance data above were selected using
the criterion that circuits calling for microstrip line char-
acteristic impedance values for which the microstrip line
width is comparable to a quarter line wavelength at the
selected frequency of 1.1 GHz were avoided. Calculation
with (13) to (19) showed that satisfactory microstrip line
widths were obtained by the choice of a tandem two-
section network (Fig. 2(c)) for the 90° bit, and a single-
section line transformer (Fig. 2(b)) for the 180° bit. The
matching networks were constructed on 10.16-cm X 20.32-
cm microstrip substrates of the same material as that used
for the diode mount. Dispersive microstrip line wave-
length calculations were used [15], [16]. The network
parameters determined for the matching networks are
summarized below.

1) Impedance-Transformation Network for 90° Phase
Shift (Fig. 2(c)): Segment of 90° electrical length: Z,,, =59
Q, linewidth=7.37 mm, length=48.51 mm. Segment of
45° electrical length: Z,=19 ©, linewidth=33.27 mm,
length =23.40 mm.

2) Impedance-Transformation Network for 180° Phase
Shift (Fig. 2(b)): Matching line segment characteristic im-
pedance: Z,, =21 §, width=29.21 mm. Electrical length
of segment: §,=65°; length=34.04 mm. The 50-Q line
width on this substrate is 9.40 mm, and its wavelength at
1.1 GHz is 1946 cm. (Dimensional tolerance approxi-
mately 0.03 mm). The substrate boards containing the
matching networks were connected individually to the
substrate containing the diode by a coaxial line stretcher
to compensate for the additional line length introduced by
the coaxial connectors between boards. When diode bias
was switched, the phase changes and amplitude fluctua-
tions of the reflection coefficients were observed to be

¢=90° with |AV|=0.2 dB (Nominal 90° network)
¢=177° with |AV|=0.25 dB (Nominal 180° network)

with a measuring precision of 1° and 0.1 dB. Exact phase
shifts and constancy of signal amplitude are in principle
possible if impedance compensation is introduced to cor-
rect for fringing reactance in the microstrip line junctions
and circuit couplings.

In the design of microstrip matching circuits, practical
lower and upper bounds exist for attainable microstrip
characteristic impedance. If a given two-state impedance
leads to a matching requirement difficult to implement in
practice, a short length of transmission line may be in-
serted ahead of a given two-state termination, leading to
new values for Z, and Z, and a new solution for Z_. In
this way a more practicable matching condition may be
reached.

In addition to the bandwidth limitation imposed by the
hybrid coupler with which it is employed, a reflection
phase shifter utilizing a matching network as described
above is further bandwidth limited in that (4) is satisfied
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only at the single frequency of calculation. A reflection-
type phase shifter having greater bandwidth may be ob-
tained by use of the procedure in which two-state imped-
ance data for the semiconductor element employed is
obtained by measurement over the frequency range of
interest. At each frequency point measured the corre-
sponding impedance Z,, is calculated using the formulas
in the Appendix. Standard methods for frequency-depen-
dent impedance transformation may be then used [17], or
computer-based optimization can be employed to produce
the design of a broad-band matching circuit for the
frequency-dependent virtual impedance Z,,.

VL

A procedure has been given for the design of imped-
ance-transforming two-port networks which transform the
reflection coefficients of a switchable one-port element
having the two input-impedance states Z; and Z,, to new
reflection coefficients having equal magnitudes and phase
angles differing by a prescribed value ¢. Valid impedance
data for Z, and Z,, preferably obtained by measurement
of the termination in situ, are essential to the implementa-
tion of this procedure. The method will succeed when the
matching-impedance values Z, determined for separate
phase shifts are sufficiently distinct in value that they can
be transformed to the line Z; by attainable matching
networks. This will normally be possible since new values
of Z, for a given phase shift ¢ may be produced by
changes in the imbedding network of the two-state ele-
ment which lead to new values of the starting impedances
Z, and Z,.

CONCLUSIONS

APPENDIX

In a two-port network characterized by the voltage—
current relations

V,=AV,—BI,
I,=CV,— DI, (A1)
the matrix of general circuit parameters
A B
M=( ) A2
C D (A2)

has the property that if the network is lossless and recipro-
cal, A and D are pure-real quantities, and B and C are
pure-imaginary. The circuits are considered to be lossless
and reciprocal since they will normally be composed of
segments of transmission line or waveguide. Therefore, M

may be written as
a jb
M=
(i )

where a, b, ¢, d are real. (A4

The matrix of the bilinear operator /§r BM appearing in
(12) is

(A3)

sy 5 | (@a—JcZy)(—dZy+ jb)
(B“)(BM)‘( (atjeZo)(dZo+jb) ) (A-5)
a B
(o ) 49
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where a* is the complex conjugate of a. Equation (12)
therefore is

aZ, +8

—a—*z—m_—B*' =0. (A.7)
Hence
-_B
Z,=-<. (A.8)

The network parameters are most readily determined by
returning to (5). Using (A.6) in (5) leads to

aZi+B _ , aZ,+B
7, =¢’ *Z,—f (A9)
With (A.8), equation (A.9) becomes
z,-z, . Z,~Z
m = L) m
Z\+Z} Z,+ZY (A-10)

Using Z,= R, +jX, and Z,= R, +jX, in (A.10), the real
and imaginary parts separate into two equations which
may be solved for R, and X,,, the real and imaginary
components of Z_:

-_2 4p
R,=-= o7

m

1+1/1+

X,=UR,+V
where P, Q, U, V have the definitions

2
P=—————(E+MV ) E=(R,R,— X\X,)

(1+U?
Q=(KN— UM +2UV) M=(X,+X))
1+ U? e

[ Ri—R, _ )
U—K(———R1+R2) N=(X,-X,)

_ (RiX,+X,Ry) _ ¢
V= (R, +R,) K—(cotz)
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Numerical Experiments on the Determination
of Cutoff Frequencies of Waveguides
of Arbitrary Cross Section

PATRICIO A. A. LAURA, KOSUKE NAGAYA, anpD GUSTAVO SANCHEZ SARMIENTO

Abstract—Finding the exact mathematical solution of an electromag-
netic waveguide problem is only possible in a rather limited number of
technological situations. The electronic engineer usually confronts a large
variety of complicating factors which makes it necessary to employ an
approximate method in order to predict cutoff frequencies, propagation
modes, attenuation parameters, etc.

The present paper considers only one case of complexity: a waveguide
of “exotic” boundary shape.

Undoubtedly the finite-element method is the most popular technique
for dealing with such a situation. Usually the accuracy of the method is
tested by applying it to simple geometric domains. The purpose of the
present study is twofold: first to verify its accuracy in the case of domains
of complicated geometry and second to introduce an approximate approach
which is based on a Fourier expansion of the boundary condition coupled
with a collocation technique which may be of interest to electronic en-

gineers.

1. INTRODUCTION

HE use of cylindrical waveguides of complicated
boundary shape is popular in many microwave en-
gineering applications.

No attempt to present a survey of the literature will be
done here since this has been accomplished in several
excellent papers by Davies [1], Bates {2], Cheng Lin [3],
etc.

When the boundary of the waveguide is not natural to

Manuscript received August 27, 1979; revised November 1, 1979,
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Naval, Puerto Belgrano, Argentina.

K. Nagaya is with the Faculty of Engineering, Yamagata University,
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one of the common coordinate systems for which the
governing partial differential equation can be solved by
the standard method of separation of variables it is neces-
sary to make use of approximate analytical or numerical
methods.

With regards to the last ones the most general ap-
proaches are probably the finite differences and the finite
elements methods. On the other hand, it is important to
point out that the finite-elements approach is the most
popular numerical method for the solution of problems in
practically any field of applied science and engineering
[4].

Most of the times the relative accuracy of the finite-ele-
ment technique is demonstrated using simple configura-
tions for which the exact solution is known.

It is the object of the present study to present a com-
parison of eigenvalues, in the case of TM modes, calcu-
lated: a) using the finite-element method and b) by means
of two different variational approaches.

Regarding the variational approaches the following
methodologies are used:

1) the cross section is transformed onto a unit circle
and then Galerkin method is used to obtain an
approximate solution of the governing differential
system;

2) a Fourier expansion-collocation method [5].

When using the conformal mapping-variational ap-
proach one of the main difficulties of the method consists
in finding the analytic function which performs the de-
sired transformation of the given domain onto a unit
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